1 | package dgs.libs.hipfloat;
|
---|
2 |
|
---|
3 | // Copyright 2003, Daniel Grobe Sachs. All Rights Reserved.
|
---|
4 | // See LICENSE for redistribution terms
|
---|
5 | //
|
---|
6 | // Some algorithms borrowed from GNU BC, but all code was rewritten.
|
---|
7 | //
|
---|
8 | // arctrig functions contributed by Greg Vander Rhodes <greg@vanderrhodes.com>
|
---|
9 |
|
---|
10 | public class hipfloat implements Comparable {
|
---|
11 | protected int mantissa;
|
---|
12 | protected int exponent;
|
---|
13 |
|
---|
14 | static public final hipfloat ZERO = new hipfloat(0);
|
---|
15 | static public final hipfloat ONE = new hipfloat(1);
|
---|
16 | static public final hipfloat HALF = new hipfloat(5,-1);
|
---|
17 | static public final hipfloat TWO = new hipfloat(2);
|
---|
18 | static public final hipfloat PI = new hipfloat(314159265,-8);
|
---|
19 | static public final hipfloat PI2 = new hipfloat(628318530,-8);
|
---|
20 | static public final hipfloat HALFPI = PI.div(TWO);
|
---|
21 | static public final hipfloat E = new hipfloat(271828182,-8);
|
---|
22 | static public final hipfloat MAXEXP = new hipfloat(23026);
|
---|
23 |
|
---|
24 | static public final hipfloatBadNum OVF = hipfloatBadNum.OVF;
|
---|
25 | static public final hipfloatBadNum NAN = hipfloatBadNum.NAN;
|
---|
26 | static public final hipfloatBadNum NoError = hipfloatBadNum.NoError;
|
---|
27 |
|
---|
28 | static private final int fact_db[] =
|
---|
29 | { 1, 1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800, 39916000 };
|
---|
30 |
|
---|
31 | static public final int MAX_EXP = 9999;
|
---|
32 |
|
---|
33 | public hipfloat(hipfloat in)
|
---|
34 | {
|
---|
35 | hipfloat out;
|
---|
36 |
|
---|
37 | mantissa = in.mantissa;
|
---|
38 | exponent = in.exponent;
|
---|
39 |
|
---|
40 | out = normalize(this);
|
---|
41 |
|
---|
42 | if( out != this ) // must be an error
|
---|
43 | throw new hipfloatError("Overflow",OVF);
|
---|
44 | }
|
---|
45 |
|
---|
46 | public hipfloat(int in)
|
---|
47 | {
|
---|
48 | mantissa = in;
|
---|
49 | exponent = 0;
|
---|
50 |
|
---|
51 | normalize(this);
|
---|
52 | }
|
---|
53 |
|
---|
54 | public hipfloat(int man, int exp)
|
---|
55 | {
|
---|
56 | hipfloat out;
|
---|
57 |
|
---|
58 | mantissa = man;
|
---|
59 | exponent = exp;
|
---|
60 |
|
---|
61 | out = normalize(this);
|
---|
62 |
|
---|
63 | if( out != this ) // must be an error
|
---|
64 | throw new hipfloatError("Overflow",OVF);
|
---|
65 | }
|
---|
66 |
|
---|
67 | public hipfloat(long man, int exp)
|
---|
68 | {
|
---|
69 | while ( (exp < -(MAX_EXP+8)) && (man != 0))
|
---|
70 | {
|
---|
71 | exp += 1;
|
---|
72 | man /= 10;
|
---|
73 | }
|
---|
74 |
|
---|
75 | if( man == 0 )
|
---|
76 | {
|
---|
77 | mantissa = 0;
|
---|
78 | exponent = -8;
|
---|
79 | return;
|
---|
80 | }
|
---|
81 |
|
---|
82 | while( (Math.abs(man) >= 1000000000) && (exp < (MAX_EXP-8)) )
|
---|
83 | {
|
---|
84 | if( (Math.abs(man) < 10000000000L) && ((Math.abs(man)%10) >= 5) )
|
---|
85 | man += 10; // need to round up
|
---|
86 |
|
---|
87 | man /= 10;
|
---|
88 | exp += 1;
|
---|
89 | }
|
---|
90 |
|
---|
91 | while( (Math.abs(man) < 100000000) && (exp > -(MAX_EXP+8)) )
|
---|
92 | {
|
---|
93 | man *= 10;
|
---|
94 | exp -= 1;
|
---|
95 | }
|
---|
96 |
|
---|
97 | if( (exp > (MAX_EXP-8)) || (man >= 1000000000) )
|
---|
98 | throw new hipfloatError("Overflow",OVF);
|
---|
99 |
|
---|
100 | mantissa = (int)man;
|
---|
101 | exponent = exp;
|
---|
102 | }
|
---|
103 |
|
---|
104 | public hipfloat(String in)
|
---|
105 | {
|
---|
106 | hipfloat work = fromString(in);
|
---|
107 |
|
---|
108 | if( work.isError() )
|
---|
109 | {
|
---|
110 | if( work == OVF )
|
---|
111 | throw new hipfloatError("Overflow on conversion",
|
---|
112 | (hipfloatBadNum)work);
|
---|
113 | else if( work == NAN )
|
---|
114 | throw new hipfloatError("Invalid number conversion",
|
---|
115 | (hipfloatBadNum)work);
|
---|
116 | else
|
---|
117 | throw new hipfloatError("Unknown error converting string",
|
---|
118 | (hipfloatBadNum)work);
|
---|
119 | }
|
---|
120 |
|
---|
121 | this.mantissa = work.mantissa;
|
---|
122 | this.exponent = work.exponent;
|
---|
123 | }
|
---|
124 |
|
---|
125 | public int mantissa()
|
---|
126 | {
|
---|
127 | return mantissa;
|
---|
128 | }
|
---|
129 |
|
---|
130 | public int exponent()
|
---|
131 | {
|
---|
132 | return exponent;
|
---|
133 | }
|
---|
134 |
|
---|
135 | public hipfloat floor()
|
---|
136 | {
|
---|
137 | if( exponent < -10 ) return ZERO;
|
---|
138 | if( exponent > 0 ) return this;
|
---|
139 |
|
---|
140 | hipfloat out = new hipfloat(this);
|
---|
141 |
|
---|
142 | while( out.exponent < 0 )
|
---|
143 | {
|
---|
144 | out.exponent++;
|
---|
145 | out.mantissa /= 10;
|
---|
146 | }
|
---|
147 |
|
---|
148 | return normalize(out);
|
---|
149 | }
|
---|
150 |
|
---|
151 | public hipfloat ceil()
|
---|
152 | {
|
---|
153 | if( this.compareTo(this.floor()) == 0 )
|
---|
154 | return this;
|
---|
155 |
|
---|
156 | return( (this.add(ONE)).floor() );
|
---|
157 | }
|
---|
158 |
|
---|
159 | public hipfloat round()
|
---|
160 | {
|
---|
161 | return (this.add(HALF)).floor();
|
---|
162 | }
|
---|
163 |
|
---|
164 | public int toint()
|
---|
165 | {
|
---|
166 | if( (this.exponent > 0) ||
|
---|
167 | ((this.exponent == 1) && (this.mantissa > 214748364)) )
|
---|
168 | throw new hipfloatError("Overflow",OVF);
|
---|
169 |
|
---|
170 | if( this.exponent == 1 )
|
---|
171 | return this.mantissa * 10;
|
---|
172 |
|
---|
173 | int exp = this.exponent, man = this.mantissa;
|
---|
174 |
|
---|
175 | while( exp < 0 )
|
---|
176 | {
|
---|
177 | exp ++;
|
---|
178 | man /= 10;
|
---|
179 | }
|
---|
180 |
|
---|
181 | return man;
|
---|
182 | }
|
---|
183 |
|
---|
184 |
|
---|
185 | public hipfloat add(hipfloat a)
|
---|
186 | {
|
---|
187 | if( a.isError() ) return a;
|
---|
188 |
|
---|
189 | if( mantissa == 0 )
|
---|
190 | return a;
|
---|
191 |
|
---|
192 | if( a.mantissa == 0 )
|
---|
193 | return this;
|
---|
194 |
|
---|
195 | if( a.exponent > exponent )
|
---|
196 | return a.add(this);
|
---|
197 | else
|
---|
198 | {
|
---|
199 | int aexp, aman;
|
---|
200 |
|
---|
201 | aexp = a.exponent;
|
---|
202 | aman = a.mantissa;
|
---|
203 |
|
---|
204 | while( aexp < exponent-1 )
|
---|
205 | {
|
---|
206 | aexp++;
|
---|
207 | aman /= 10;
|
---|
208 | }
|
---|
209 |
|
---|
210 | if( aexp == exponent-1 )
|
---|
211 | {
|
---|
212 | if( Math.abs(aman)%10 >= 5 )
|
---|
213 | aman += 10;
|
---|
214 |
|
---|
215 | aman /= 10;
|
---|
216 | aexp++;
|
---|
217 | }
|
---|
218 |
|
---|
219 | try
|
---|
220 | { return new hipfloat(mantissa+aman, exponent); }
|
---|
221 | catch( hipfloatError error )
|
---|
222 | { return error.actual_return; }
|
---|
223 | }
|
---|
224 |
|
---|
225 | }
|
---|
226 |
|
---|
227 | public hipfloat mul(hipfloat a)
|
---|
228 | {
|
---|
229 | if( a.isError() ) return a;
|
---|
230 |
|
---|
231 | long man;
|
---|
232 | int exp;
|
---|
233 |
|
---|
234 | exp = exponent + a.exponent;
|
---|
235 | man = (long)mantissa * a.mantissa;
|
---|
236 |
|
---|
237 | try
|
---|
238 | { return new hipfloat(man, exp); }
|
---|
239 | catch( hipfloatError error )
|
---|
240 | { return error.actual_return; }
|
---|
241 | }
|
---|
242 |
|
---|
243 | public hipfloat sub(hipfloat a)
|
---|
244 | {
|
---|
245 | if( a.isError() ) return a;
|
---|
246 |
|
---|
247 | try
|
---|
248 | { return this.add(a.neg()); }
|
---|
249 | catch( hipfloatError error )
|
---|
250 | { return error.actual_return; }
|
---|
251 | }
|
---|
252 |
|
---|
253 | public hipfloat div(hipfloat a)
|
---|
254 | {
|
---|
255 | if( a.isError() ) return a;
|
---|
256 |
|
---|
257 | if( a.compareTo(ZERO) == 0 )
|
---|
258 | return NAN;
|
---|
259 |
|
---|
260 | long divs = 1000000000000000000L/a.mantissa;;
|
---|
261 | int exp = -a.exponent - 18;
|
---|
262 |
|
---|
263 | hipfloat b;
|
---|
264 |
|
---|
265 | try
|
---|
266 | { b = new hipfloat(divs, exp); }
|
---|
267 | catch( hipfloatError error )
|
---|
268 | { return error.actual_return; }
|
---|
269 |
|
---|
270 | return this.mul(b);
|
---|
271 | }
|
---|
272 |
|
---|
273 | public hipfloat pow(hipfloat a)
|
---|
274 | {
|
---|
275 | if( a.isError() ) return a;
|
---|
276 |
|
---|
277 | hipfloat x;
|
---|
278 | int i, t;
|
---|
279 |
|
---|
280 | x = this;
|
---|
281 |
|
---|
282 | if( a.compareTo(a.floor()) == 0 ) // if integer
|
---|
283 | try
|
---|
284 | {
|
---|
285 | t = (a.abs()).toint();
|
---|
286 |
|
---|
287 | hipfloat out=ONE,z=x;
|
---|
288 |
|
---|
289 | while( t > 0 )
|
---|
290 | {
|
---|
291 | if( 1 == (t % 2) )
|
---|
292 | out = out.mul(z);
|
---|
293 |
|
---|
294 | z = z.mul(z);
|
---|
295 | t = t / 2;
|
---|
296 | }
|
---|
297 |
|
---|
298 | return out;
|
---|
299 | }
|
---|
300 | catch( hipfloatError error )
|
---|
301 | {
|
---|
302 | // fall back to using logs
|
---|
303 | ;
|
---|
304 | }
|
---|
305 |
|
---|
306 | if( x.compareTo(ZERO) < 0 )
|
---|
307 | return NAN; // if a isn't integer, this isn't valid
|
---|
308 |
|
---|
309 | return ((x.ln()).mul(a)).exp();
|
---|
310 | }
|
---|
311 |
|
---|
312 | public hipfloat sqrt()
|
---|
313 | {
|
---|
314 | hipfloat guess;
|
---|
315 | hipfloat check;
|
---|
316 |
|
---|
317 | if( this.compareTo(ZERO) < 0 )
|
---|
318 | return NAN;
|
---|
319 |
|
---|
320 | if( this.compareTo(ZERO) == 0 )
|
---|
321 | return ZERO;
|
---|
322 |
|
---|
323 | try {
|
---|
324 | int i;
|
---|
325 |
|
---|
326 | //if( this.compareTo(new hipfloat(1)) > 0 )
|
---|
327 | guess = new hipfloat(1,(exponent+8)/2);
|
---|
328 | //else
|
---|
329 | // guess = new hipfloat(1,0);
|
---|
330 |
|
---|
331 | for( i = 0; i < 8; i++ )
|
---|
332 | {
|
---|
333 | check = this.div(guess);
|
---|
334 | guess = (check.add(guess)).mul(HALF);
|
---|
335 | }
|
---|
336 | }
|
---|
337 | catch( hipfloatError error )
|
---|
338 | { return error.actual_return; }
|
---|
339 |
|
---|
340 | return guess;
|
---|
341 | }
|
---|
342 |
|
---|
343 | // Use the Taylor series:
|
---|
344 | // 3 5
|
---|
345 | // x-1 1 x-1 1 x-1
|
---|
346 | // ln(x) =2 --- + - --- + - --- + ...
|
---|
347 | // x+1 3 x+1 5 x+1
|
---|
348 |
|
---|
349 | public hipfloat ln()
|
---|
350 | {
|
---|
351 | if( this.compareTo(ZERO) < 0 )
|
---|
352 | return NAN;
|
---|
353 |
|
---|
354 | hipfloat in = new hipfloat(this);
|
---|
355 | int scale = 2;
|
---|
356 | int i;
|
---|
357 |
|
---|
358 | // bring input to the range 0.5 - 2, exclusive
|
---|
359 |
|
---|
360 | while( (in.compareTo(TWO) >= 0) || (in.compareTo(HALF) <= 0) )
|
---|
361 | {
|
---|
362 | scale *= 2;
|
---|
363 | in = in.sqrt();
|
---|
364 | }
|
---|
365 |
|
---|
366 | hipfloat t;
|
---|
367 | hipfloat t2;
|
---|
368 |
|
---|
369 | hipfloat out = ZERO;
|
---|
370 |
|
---|
371 | t = (in.sub(ONE)).div(in.add(ONE));
|
---|
372 | t2 = t.mul(t);
|
---|
373 |
|
---|
374 |
|
---|
375 | for( i = 0; i < 20; i++ )
|
---|
376 | {
|
---|
377 | out = out.add(t.div(new hipfloat(1+2*i)));
|
---|
378 | t = t.mul(t2);
|
---|
379 |
|
---|
380 | if( t.nearTo(ZERO,10) )
|
---|
381 | break;
|
---|
382 | }
|
---|
383 |
|
---|
384 | return out.mul(new hipfloat(scale));
|
---|
385 | }
|
---|
386 |
|
---|
387 | public hipfloat exp()
|
---|
388 | {
|
---|
389 | hipfloat x = new hipfloat(this);
|
---|
390 | hipfloat xx = new hipfloat(0);
|
---|
391 | hipfloat out = new hipfloat(0);
|
---|
392 | int count = 0, i;
|
---|
393 |
|
---|
394 | // don't waste time doing computation if it'll overflow
|
---|
395 |
|
---|
396 | if( x.compareTo(MAXEXP) > 0 )
|
---|
397 | return OVF;
|
---|
398 |
|
---|
399 | // Scale to range where we can use the Taylor series
|
---|
400 |
|
---|
401 | while( x.compareTo(ONE) > 0 )
|
---|
402 | {
|
---|
403 | x = x.div(TWO);
|
---|
404 | count ++;
|
---|
405 | }
|
---|
406 |
|
---|
407 | // Taylor series of 1+x+x^2/2!+x^3/3! ...
|
---|
408 |
|
---|
409 | out = (new hipfloat(1)).add(x);
|
---|
410 | xx = x.mul(x);
|
---|
411 |
|
---|
412 | for( i = 2; i < 12; i++ )
|
---|
413 | {
|
---|
414 | out = out.add(xx.div(this.factorial(i)));
|
---|
415 | xx = xx.mul(x);
|
---|
416 | }
|
---|
417 |
|
---|
418 | while( count-- > 0 )
|
---|
419 | out = out.mul(out);
|
---|
420 |
|
---|
421 | return out;
|
---|
422 | }
|
---|
423 |
|
---|
424 | public hipfloat sin()
|
---|
425 | {
|
---|
426 | // series is x - x^3/3! + x^5/5! - ...
|
---|
427 |
|
---|
428 | int i, sign = -1;
|
---|
429 | hipfloat x = this;
|
---|
430 |
|
---|
431 | if( x.exponent > 0 )
|
---|
432 | return OVF;
|
---|
433 |
|
---|
434 | while( x.abs().compareTo(PI) > 0 )
|
---|
435 | {
|
---|
436 | int exp = x.exponent + 7;
|
---|
437 | if( exp < 0 ) exp = 0;
|
---|
438 |
|
---|
439 | if( x.compareTo(ZERO) > 0 )
|
---|
440 | x = x.sub(PI2.mul(new hipfloat(1,exp)));
|
---|
441 | else
|
---|
442 | x = x.add(PI2.mul(new hipfloat(1,exp)));
|
---|
443 | }
|
---|
444 |
|
---|
445 | if( x.abs().compareTo(HALFPI) > 0 )
|
---|
446 | if( x.compareTo(ZERO) > 0 )
|
---|
447 | x = PI.sub(x);
|
---|
448 | else
|
---|
449 | x = PI.neg().add(x);
|
---|
450 |
|
---|
451 | hipfloat out = x;
|
---|
452 | hipfloat f = x.mul(x);
|
---|
453 | hipfloat d = ONE;
|
---|
454 |
|
---|
455 | for( i = 3; i < 13; i += 2)
|
---|
456 | {
|
---|
457 | x = x.mul(f);
|
---|
458 | d = d.mul(new hipfloat(i-1)).mul(new hipfloat(i));
|
---|
459 |
|
---|
460 | if( sign == 1 )
|
---|
461 | out = out.add(x.div(d));
|
---|
462 | else
|
---|
463 | out = out.sub(x.div(d));
|
---|
464 |
|
---|
465 | sign = -sign;
|
---|
466 | }
|
---|
467 |
|
---|
468 | return out;
|
---|
469 | }
|
---|
470 |
|
---|
471 | public hipfloat cos()
|
---|
472 | {
|
---|
473 | return HALFPI.sub(this).sin();
|
---|
474 | }
|
---|
475 |
|
---|
476 | public hipfloat tan()
|
---|
477 | {
|
---|
478 | return this.sin().div(this.cos());
|
---|
479 | }
|
---|
480 |
|
---|
481 | public hipfloat arctan ()
|
---|
482 | {
|
---|
483 | int i, sign = -1;
|
---|
484 | hipfloat x = this.abs ();
|
---|
485 | hipfloat xsign = new hipfloat (1);
|
---|
486 | if (this.compareTo (ZERO) < 0)
|
---|
487 | {
|
---|
488 | xsign = xsign.neg ();
|
---|
489 | }
|
---|
490 | boolean over1flag = false;
|
---|
491 | boolean oneflag = false;
|
---|
492 | if (x.compareTo (ONE) > 0)
|
---|
493 | {
|
---|
494 | x = ONE.div (x);
|
---|
495 | over1flag = true;
|
---|
496 | }
|
---|
497 |
|
---|
498 | if (x.compareTo (ONE) == 0)
|
---|
499 | {
|
---|
500 | oneflag = true;
|
---|
501 | }
|
---|
502 | // use series
|
---|
503 | // arctan(y) = y - y^3/3 + y^5/5 - y^7/7 + y^9/9 - ...
|
---|
504 |
|
---|
505 | hipfloat out = x;
|
---|
506 | if (!oneflag)
|
---|
507 | {
|
---|
508 |
|
---|
509 | hipfloat f = x.mul (x);
|
---|
510 | hipfloat d = ONE;
|
---|
511 |
|
---|
512 | for (i = 3; i < 23; i += 2)
|
---|
513 | {
|
---|
514 | x = x.mul (f);
|
---|
515 | d = new hipfloat (i);
|
---|
516 |
|
---|
517 | if (sign == 1)
|
---|
518 | out = out.add (x.div (d));
|
---|
519 | else
|
---|
520 | out = out.sub (x.div (d));
|
---|
521 |
|
---|
522 | sign = -sign;
|
---|
523 | }
|
---|
524 |
|
---|
525 | if (over1flag)
|
---|
526 | {
|
---|
527 | out = PI.div (new hipfloat (2)).sub (out);
|
---|
528 | }
|
---|
529 | }
|
---|
530 | else
|
---|
531 | {
|
---|
532 | out = new hipfloat (785398163, -9);
|
---|
533 | }
|
---|
534 |
|
---|
535 | return out.mul (xsign);
|
---|
536 | }
|
---|
537 |
|
---|
538 | public hipfloat arccos ()
|
---|
539 | {
|
---|
540 | if (this.abs ().compareTo (ONE) > 0)
|
---|
541 | return NAN;
|
---|
542 |
|
---|
543 | hipfloat x = this.abs ();
|
---|
544 | boolean negflag = false;
|
---|
545 | boolean zeroflag = false;
|
---|
546 | boolean oneflag = false;
|
---|
547 | if (this.compareTo (ZERO) < 0)
|
---|
548 | negflag = true;
|
---|
549 |
|
---|
550 | if (this.compareTo (ZERO) == 0)
|
---|
551 | zeroflag = true;
|
---|
552 |
|
---|
553 | if (x.compareTo (ONE) == 0)
|
---|
554 | oneflag = true;
|
---|
555 |
|
---|
556 | hipfloat out = new hipfloat (1);
|
---|
557 |
|
---|
558 | if (zeroflag)
|
---|
559 | out = PI.div (TWO);
|
---|
560 | else
|
---|
561 | {
|
---|
562 | if (oneflag)
|
---|
563 | out = ZERO;
|
---|
564 | else
|
---|
565 | {
|
---|
566 | out = out.sub (x.mul (x)).sqrt ().div (x);
|
---|
567 | out = out.arctan ();
|
---|
568 | }
|
---|
569 | }
|
---|
570 |
|
---|
571 | if (negflag)
|
---|
572 | out = PI.sub (out);
|
---|
573 |
|
---|
574 | return out;
|
---|
575 | }
|
---|
576 |
|
---|
577 | public hipfloat arcsin ()
|
---|
578 | {
|
---|
579 | if (this.abs ().compareTo (ONE) > 0)
|
---|
580 | return NAN;
|
---|
581 |
|
---|
582 | hipfloat x = this.abs ();
|
---|
583 | boolean negflag = false;
|
---|
584 | boolean zeroflag = false;
|
---|
585 | boolean oneflag = false;
|
---|
586 | if (this.compareTo (ZERO) < 0)
|
---|
587 | negflag = true;
|
---|
588 |
|
---|
589 | if (this.compareTo (ZERO) == 0)
|
---|
590 | zeroflag = true;
|
---|
591 |
|
---|
592 | if (x.compareTo (ONE) == 0)
|
---|
593 | oneflag = true;
|
---|
594 |
|
---|
595 | hipfloat out = new hipfloat (1);
|
---|
596 |
|
---|
597 | if (zeroflag)
|
---|
598 | out = ZERO;
|
---|
599 | else
|
---|
600 | {
|
---|
601 | if (oneflag)
|
---|
602 | out = PI.div (TWO);
|
---|
603 | else
|
---|
604 | {
|
---|
605 | out = x.div (out.sub (x.mul (x)).sqrt ());
|
---|
606 | out = out.arctan ();
|
---|
607 | }
|
---|
608 | }
|
---|
609 |
|
---|
610 | if (negflag)
|
---|
611 | out = out.neg ();
|
---|
612 |
|
---|
613 | return out;
|
---|
614 | }
|
---|
615 |
|
---|
616 | public hipfloat neg()
|
---|
617 | {
|
---|
618 | return new hipfloat(-mantissa,exponent);
|
---|
619 | }
|
---|
620 |
|
---|
621 | static public hipfloat factorial(int i)
|
---|
622 | {
|
---|
623 | if( i < 12 )
|
---|
624 | return new hipfloat(fact_db[i]);
|
---|
625 | else
|
---|
626 | return (new hipfloat(i)).factorial();
|
---|
627 | }
|
---|
628 |
|
---|
629 | public hipfloat factorial()
|
---|
630 | {
|
---|
631 | if( this.compareTo(ZERO) <= 0 )
|
---|
632 | return new hipfloat( 1 );
|
---|
633 |
|
---|
634 | return this.mul((this.sub(ONE)).factorial());
|
---|
635 | }
|
---|
636 |
|
---|
637 | public hipfloat abs()
|
---|
638 | {
|
---|
639 | return new hipfloat(Math.abs(mantissa),exponent);
|
---|
640 | }
|
---|
641 |
|
---|
642 | public boolean nearTo(hipfloat a, int ulp)
|
---|
643 | {
|
---|
644 | if( a.isError() )
|
---|
645 | return false;
|
---|
646 |
|
---|
647 | int x;
|
---|
648 |
|
---|
649 | hipfloat c1 = new hipfloat(this);
|
---|
650 | hipfloat c2 = new hipfloat(a);
|
---|
651 |
|
---|
652 | while( c1.exponent < c2.exponent )
|
---|
653 | {
|
---|
654 | c2.exponent --;
|
---|
655 | c2.mantissa /= 10;
|
---|
656 | }
|
---|
657 |
|
---|
658 | while( c2.exponent < c1.exponent )
|
---|
659 | {
|
---|
660 | c1.exponent --;
|
---|
661 | c1.mantissa /= 10;
|
---|
662 | }
|
---|
663 |
|
---|
664 | x = c1.mantissa - c2.mantissa;
|
---|
665 |
|
---|
666 | if( Math.abs(x) <= ulp )
|
---|
667 | return true;
|
---|
668 | else
|
---|
669 | return false;
|
---|
670 | }
|
---|
671 |
|
---|
672 | public boolean isError()
|
---|
673 | {
|
---|
674 | return false;
|
---|
675 | }
|
---|
676 |
|
---|
677 | public int compareTo(Object o)
|
---|
678 | {
|
---|
679 | if( ((hipfloat)(o)).isError() )
|
---|
680 | return 1;
|
---|
681 |
|
---|
682 | hipfloat a = (hipfloat)o;
|
---|
683 |
|
---|
684 | if( a.mantissa == 0 )
|
---|
685 | return this.mantissa;
|
---|
686 |
|
---|
687 | return (this.sub(a)).mantissa;
|
---|
688 | }
|
---|
689 |
|
---|
690 | static int returnError(char[] out, String error)
|
---|
691 | {
|
---|
692 | int i;
|
---|
693 |
|
---|
694 | for( i = 0; i < error.length(); i++ )
|
---|
695 | out[i] = error.charAt(i);
|
---|
696 |
|
---|
697 | return error.length();
|
---|
698 | }
|
---|
699 |
|
---|
700 | public int toCharArray(char[] out, boolean Scientific)
|
---|
701 | {
|
---|
702 | int unit;
|
---|
703 | int frac;
|
---|
704 | int vexp = exponent + 8;
|
---|
705 | int i, j, sigfig;
|
---|
706 |
|
---|
707 | char c;
|
---|
708 | int len = 0;
|
---|
709 |
|
---|
710 | if( this == NAN )
|
---|
711 | return returnError(out, "Not a number");
|
---|
712 |
|
---|
713 | if( this == OVF )
|
---|
714 | return returnError(out, "Overflow");
|
---|
715 |
|
---|
716 | if( mantissa < 0 )
|
---|
717 | out[len++] = '-';
|
---|
718 |
|
---|
719 | frac = Math.abs(mantissa);
|
---|
720 |
|
---|
721 | if( !Scientific )
|
---|
722 | { // Can we print this number?
|
---|
723 | i = 100000000;
|
---|
724 | sigfig = 1;
|
---|
725 |
|
---|
726 | while( (i > 0) && (0!=(mantissa % i)) )
|
---|
727 | {
|
---|
728 | sigfig ++;
|
---|
729 | i /= 10;
|
---|
730 | }
|
---|
731 |
|
---|
732 | if( (vexp == -1) && (sigfig == 9) )
|
---|
733 | {
|
---|
734 | out[len++] = '0';
|
---|
735 | out[len++] = '.';
|
---|
736 | vexp = 8;
|
---|
737 | }
|
---|
738 |
|
---|
739 | if( (vexp <= 8) && (vexp >= -9+sigfig))
|
---|
740 | { // best not scientific
|
---|
741 | i = 100000000;
|
---|
742 |
|
---|
743 | while( vexp < 0 )
|
---|
744 | {
|
---|
745 | frac = frac/10;
|
---|
746 | vexp++;
|
---|
747 | sigfig++;
|
---|
748 | }
|
---|
749 |
|
---|
750 | for( j = 0; j < sigfig; j++ )
|
---|
751 | {
|
---|
752 | if( vexp == -1 )
|
---|
753 | out[len++] = '.';
|
---|
754 |
|
---|
755 | unit = frac/i;
|
---|
756 | frac = frac%i;
|
---|
757 | out[len++] = (char) ('0' + (char)unit);
|
---|
758 |
|
---|
759 | vexp--;
|
---|
760 | i /= 10;
|
---|
761 | }
|
---|
762 |
|
---|
763 | while( vexp >= 0 )
|
---|
764 | {
|
---|
765 | out[len++] = '0';
|
---|
766 | vexp--;
|
---|
767 | }
|
---|
768 |
|
---|
769 | return len;
|
---|
770 | }
|
---|
771 | }
|
---|
772 |
|
---|
773 | for( i = 100000000; i > 0 ; i /= 10 )
|
---|
774 | {
|
---|
775 | unit = frac/i;
|
---|
776 | frac = frac%i;
|
---|
777 |
|
---|
778 | out[len++] = (char) ('0'+(char)unit);
|
---|
779 | if( i == 100000000 )
|
---|
780 | out[len++] = '.';
|
---|
781 | }
|
---|
782 |
|
---|
783 | out[len++] = 'e';
|
---|
784 |
|
---|
785 | if( vexp < 0 )
|
---|
786 | {
|
---|
787 | out[len++] = '-';
|
---|
788 | vexp = -vexp;
|
---|
789 | }
|
---|
790 | else
|
---|
791 | out[len++] = '+';
|
---|
792 |
|
---|
793 |
|
---|
794 | boolean printed = false;
|
---|
795 |
|
---|
796 | for( i = 10000; i > 0; i /= 10 )
|
---|
797 | {
|
---|
798 | if( (vexp >= i) || (i == 1) || printed )
|
---|
799 | {
|
---|
800 | printed = true;
|
---|
801 | out[len++] = (char) ('0' + (char) (vexp/i));
|
---|
802 | }
|
---|
803 |
|
---|
804 | vexp %= i;
|
---|
805 |
|
---|
806 | }
|
---|
807 |
|
---|
808 |
|
---|
809 | return len;
|
---|
810 | }
|
---|
811 |
|
---|
812 | public String toString(boolean Scientific)
|
---|
813 | {
|
---|
814 | char out[] = new char[64];
|
---|
815 | int len;
|
---|
816 |
|
---|
817 | len = this.toCharArray(out, Scientific);
|
---|
818 |
|
---|
819 | return new String(out,0,len);
|
---|
820 | }
|
---|
821 |
|
---|
822 | public String toString()
|
---|
823 | {
|
---|
824 | return toString(false);
|
---|
825 | }
|
---|
826 |
|
---|
827 | public static hipfloat fromString(String in)
|
---|
828 | {
|
---|
829 | int i, j, state = 0, exp = 0, dot = 0;
|
---|
830 | boolean neg = false, expneg = false;
|
---|
831 |
|
---|
832 | hipfloat work = new hipfloat(0);
|
---|
833 |
|
---|
834 | hipfloatBadNum error = NoError;
|
---|
835 |
|
---|
836 | char c;
|
---|
837 |
|
---|
838 | in = in.trim();
|
---|
839 | i = 0;
|
---|
840 |
|
---|
841 | while( (error == NoError) && (i < in.length()) )
|
---|
842 | {
|
---|
843 | c = in.charAt(i++);
|
---|
844 |
|
---|
845 | switch( state )
|
---|
846 | {
|
---|
847 | case 0: state = 1;
|
---|
848 |
|
---|
849 | if( c == '-' )
|
---|
850 | {
|
---|
851 | neg = true;
|
---|
852 | break;
|
---|
853 | }
|
---|
854 |
|
---|
855 | if( c == '+' )
|
---|
856 | break;
|
---|
857 |
|
---|
858 | case 1: if( (c >= '0') && (c <= '9') )
|
---|
859 | {
|
---|
860 | if( dot == 0 )
|
---|
861 | work = (work.mul(new hipfloat(10))).
|
---|
862 | add(new hipfloat(c-'0'));
|
---|
863 | else
|
---|
864 | {
|
---|
865 | work = work.add(new hipfloat((c-'0'),dot));
|
---|
866 | dot --;
|
---|
867 | }
|
---|
868 | }
|
---|
869 | else if( (c == '.') && (dot == 0) )
|
---|
870 | dot = -1;
|
---|
871 | else if( (c == 'e') || (c == 'E') )
|
---|
872 | state = 2;
|
---|
873 | else
|
---|
874 | error = NAN;
|
---|
875 |
|
---|
876 | break;
|
---|
877 |
|
---|
878 | case 2: state = 3;
|
---|
879 |
|
---|
880 | if( c == '-' )
|
---|
881 | {
|
---|
882 | expneg = true;
|
---|
883 | break;
|
---|
884 | }
|
---|
885 |
|
---|
886 | if( c == '+' )
|
---|
887 | break;
|
---|
888 |
|
---|
889 | case 3: if( (c >= '0') && (c <= '9') )
|
---|
890 | {
|
---|
891 | exp = exp * 10 + (c - '0');
|
---|
892 |
|
---|
893 | if( exp > 10000 )
|
---|
894 | error = OVF;
|
---|
895 | }
|
---|
896 | else
|
---|
897 | error = NAN;
|
---|
898 | }
|
---|
899 | }
|
---|
900 |
|
---|
901 | if( error != NoError )
|
---|
902 | return error;
|
---|
903 |
|
---|
904 | if( neg )
|
---|
905 | work = work.neg();
|
---|
906 |
|
---|
907 | if( expneg )
|
---|
908 | exp = -exp;
|
---|
909 |
|
---|
910 | if( exp != 0 )
|
---|
911 | work = work.mul(new hipfloat(1,exp));
|
---|
912 |
|
---|
913 | //System.err.println(work);
|
---|
914 |
|
---|
915 | return work;
|
---|
916 | }
|
---|
917 |
|
---|
918 | private static hipfloat normalize(hipfloat in)
|
---|
919 | {
|
---|
920 | while ( (in.exponent < -(MAX_EXP+8)) && (in.mantissa != 0))
|
---|
921 | {
|
---|
922 | in.exponent += 1;
|
---|
923 | in.mantissa /= 10;
|
---|
924 | }
|
---|
925 |
|
---|
926 | if( in.mantissa == 0 )
|
---|
927 | {
|
---|
928 | in.exponent = -8;
|
---|
929 | return in;
|
---|
930 | }
|
---|
931 |
|
---|
932 | while( (Math.abs(in.mantissa) >= 1000000000) && (in.exponent < (MAX_EXP-8)) )
|
---|
933 | {
|
---|
934 | if( (Math.abs(in.mantissa % 10)) >= 5 )
|
---|
935 | in.mantissa += 10; // need to round up
|
---|
936 |
|
---|
937 | in.mantissa /= 10;
|
---|
938 | in.exponent += 1;
|
---|
939 | }
|
---|
940 |
|
---|
941 | while( (Math.abs(in.mantissa) < 100000000) && (in.exponent > -(MAX_EXP+8)) )
|
---|
942 | {
|
---|
943 | in.mantissa *= 10;
|
---|
944 | in.exponent -= 1;
|
---|
945 | }
|
---|
946 |
|
---|
947 | if( (in.exponent > (MAX_EXP-8)) || (in.mantissa >= 1000000000) )
|
---|
948 | return OVF;
|
---|
949 | else
|
---|
950 | return in;
|
---|
951 | }
|
---|
952 | }
|
---|
953 |
|
---|